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1 Introduction
The main challenge of time domain methods in analysing structures including rectangular cavities is poor convergence due
to resonant nature of cavity. Method of moments (MoM) along with integral equation (IE) analysis can be an efficient and
versatile solution due to no suffering from numerical dispersion. A key element in IE solution is relevant Green’s function of
the structure. But the main fact is the large number of unknowns and slow convergence of iterative solvers in computation of
spatial Green’s function. Techniques like Poisson summation [1] and Ewald summation [2] have been widely used to accelerate
the convergence of Green’s function derivation. In this paper combination of characteristic Green’s function (CGF) and complex
image (CI) technique is used for efficient derivation of spatial Green’s function of rectangular cavities. First the desired cavity
is approximated by a separable structure. Then CGF method proposed an exact double contour integral representation for
separable structure. Before applying CI technique, discrete spectrum contribution part of the integrand is modified by replacing
accurate reflection coefficients of surface wave (SW) modes from walls of cavity. The main advantage of the proposed CGF-CI
method is its simple and rapid implementation. For validation and and verification of speed and accuracy, comparison with
MoM+multilevel fast multipole method (MLFMM) is considered [3].
2 CGF-CI formulation for rectangular cavity and numerical results
A 3-D Green’s function of an infinitesmall source surrounded by layered media in all three directions (Fig. 1(a)) is governed by
the Helmholtz’s equation [∇2 + k2

0εr(x,y,z)]GA(x,y,z;x′,y′,z′) = −δ (x− x′)δ (y− y′)δ (z− z′), where εr(x,y,z) represents the
variation of the relative dielectric constant. It can be shown that the 3-D Helmholtz’s equation can be separated into three 1-D
equations if

εr(x,y,z) = εx(x)+ εy(y)+ εz(z), (1)

where εν(ν),ν = x,y,z is the relative dielectric constant of a layered stratified normal to ν direction denoted by Nν [4]. It
means that the original structure has been decomposed into three layered media shown in Fig. 1(a). For separable structures
this decomposition can be done exactly and exact analytical solution for spatial Green’s function can be obtained in terms
of the related CGFs. The CGF of each Nν layered media denoted by Gv,ν is governed by the 1-D Helmholtz’s equation
d2Ga,ν

dν2 +(εν(ν)k2
0 +λν)Ga,ν =−δ (ν −ν ′) where ν = x, y, z and λx +λy +λz = 0. Solution to 3D Helmholtz’s equation under

the separability assumption is given by double contour integration as [4]

GA(x,y;x′,y′) = (
−1
2π j

)2
∮
Cx

∮
Cz

Ga,x(x,x′,λx)Ga,y(y,y′,−λx −λz)Ga,z(z,z′,λz)dλxdλz (2)

The contours Cx and Cz, enclose only the singularities of Ga,x and Ga,z respectively (including branch cuts, branch points and
discreet poles singularities), in counterclockwise sense (Fig. 1(e)). For our desired rectangular cavity of Fig. 1(a), such a
separation is not rigorously possible [4]. So we have used an approximate separation of (1). Now if one ignores (1) in exterior
wedges resulted by combining Nx, Ny and Nz then there will be an infinite number of solutions for εx1, εx2, εy1, εy2, εz1 and εz2
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Figure 1. (a) Infinitesmall source in a rectangular cavity, (b) Nx, (c) Ny (d) and Nz layered media, (e) Integration path of Cx in
λx-plane, equivalent and approximate path of Cx in (f) βy1-plane and (g) βν1-plane (ν = x, z)
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Figure 2. (a) and (b) real and imaginary part of GA for CGF-CI with the exact MoM+MLFMM for a rectangular cavity with
εr1 = 20, εr2 = 1 and t = 0.1λ , l = 3λ and w = λ , where y = y′ = t, x′ = w/2 and z′ = l/2 and (c), (d) for source located in
x′ = w/20.

satisfy (1). It may be noted that these solutions of εν(ν),ν = x,y,z are not necessarily physically available relative dielectric
constants. Furthermore, it can be shown that the final solution is independent of choice of Nx, Ny and Nz layered media [4].
We choose εx1 = 0, εx2 = εr2 − εr1, εy1 = εr1, εy2 = εr2, εz1 = 0 and εz2 = εr2 − εr1 which help to consider a rectangular cavity
as an infinite Ny dielectric slab which is truncated at x = 0, x = w, z = 0, z = l facets. Having Ga,x and Ga,y and Ga,z, numerical
computation of (2) is time-consuming due to slowly-convergent and oscillatory behavior of the integrand near the singularities
[4]. Combination of CGF and CI has been successfully used for 2-D waveguides [4]. Here in the first step of CGF-CI for double
contour integral of (2), surface wave poles of Ga,y are extracted. Then the remaining function is accurately approximated as
a sum of exponentials along the approximate path indicated in Fig. 1(f). An efficient and fast generalized pencil of function

(GPOF) algorithm [5] can be used for this approximation. Then we will have Ga,y ≈ ∑
Py
p=1

Resp
λy−λyp

+∑
My
i=1 ai

ebiβy2

2 jβy2
where Py is

all the SW poles of Ga,y including TE and TM SW poles. Resp is the residue of Ga,y at the pth pole. ai and bi come from
exponential approximation (GPOF). Substituting in integrand of (2), GA will be GA = Ge

A +Gm
A . Gm

A represents propagation
and incidence of surface wave poles of Ny medium from an infinite interfaces of Nx and Nz media of Fig. 1(b) and Fig. 1(d).
But actually the SWs of Ny are reflected from end-facet of walls of rectangular cavity located in x = 0, x = w, z = 0 and z = l
in Fig. 1. This discrepancy results from our separability assumption of original structure of rectangular cavity. In order to
improvement of the method, Ga,x and Ga,z are modified to G∗

a,xp and G∗
a,zp respectively by replacing the reflection coefficients

of pth surface wave pole of Ny structure at the interfaces of Nx and Nz by the correct reflection coefficients from truncating
surface like at x = w. Now CI technique is applied to G∗

a,xp and G∗
a,zp to approximate them as a sum of exponentials along the

approximate path shown in Fig. 1(g). Then we have G∗
a,xp ≈ ∑

Mxp
i=1 cip

edipβx1

2 jβx1
, G∗

a,zp ≈ ∑
Mzp
n=1 fnp

egnpβz1
2 jβz1

Substituting G∗
a,xp and

G∗
a,zp in (2) and using 2-D Weyl’s identity, a closed-form relation of Gm

A can be obtained:

Gm
A ≈ −1

4 j

Py

∑
p=1

Resp

Mxp

∑
i=1

Mzp

∑
n=1

cip fnpH(2)
0 (kρ pρinp), (3)

where kρ p =
√

εr1k2
0 −β 2

y1p =
√

εr2k2
0 −β 2

y2p and ρinp =
√
( jdip)2 +( jgnp)2. It is shown that if the source and also observation

points are not very close to corners and walls of cavity, one can assume just the direct source terms of Ga,x and Ga,z in Ge
A, i.e.

e− j2βν1|ν−ν ′|/(2 jβν1), ν = x,z, and then by using the well-known Wely’s identity, closed-form relation for Ge
A can be achieved

as Ge
A ≈ ∑

My
i=1 ai

e jk0
√

εr2Ri
4πRi

where Ri =
√
|x− x′|2 +( jbi)2 + |z− z′|2 and k2

0εr2 = β 2
x1 +β 2

y2 +β 2
z1. Then having Gm

A and Ge
A then

an approximate closed-form expression for spatial Green’s function for rectangular cavity of Fig. 1(a), can be achieved. In
Fig. 2, results of real and imaginary parts of GA for a problem of Fig. 1(a), computed by CGF-CI and MoM+MLFMM are
demonstrated for two cases of source locations. In Fig. 2(a) and 2(b) due to sufficient distance of source location from the walls
and corners, excellent agreements of CGF-CI results (without any modification of reflection coefficients) with the exact MoM
can be achieved. In Fig. 2(c) and (d), source is become closer to left side wall of cavity located in x′ = w/20, y′ = t and z′ = l/2.
We can see that without any reflection coefficients modifications the deviation of the results of CGF-CI in comparison with the
exact MoM become larger. With the use of reflection coefficients modification again acceptable agreements can be achieved.
The proposed technique is nearly five times faster than MoM+MLFMM.
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